时间简史科普[3]-膨胀的宇宙

概念

恒星是由炽热的气体组成的、能够自身发光的球形的或类似球形的天体。 太阳是离地球最近的恒星。由于恒星离地球遥远,人们用肉眼觉察不到它们在天球上的位置变化,因此古代人称为“恒”星,实际上恒星在不停地运动,如太阳就以每秒250千米的速度绕银河系的中心运转。

行星是环绕恒星运行的天体之一。行星本身不发射可见光,以表面反射太阳光而发亮。在以恒星组成的各个星座的天空背景中,行星有明显的相对移动,所以被称为“行星”。行星环绕恒星公转。行星的质量要比其所环绕运行的恒星小得多。地球是太阳系中一颗普通的行星。

卫星是围绕行星运转的天体。卫星质量比其环绕的行星小。本身不发射可见光,以表面反射太阳光而发亮。月球是地球的天然卫星。除天然卫星外,人类已发射地球卫星及其天体的人造卫星。

星系的距离

远在公元 1750 年,就有些天文学家建议,如果大部分可见的恒星处在一个单独的碟状的结构中,则可以知道银河系的外观是一个慢慢旋转的螺旋的恒星群。几十年之后,天文学家威廉·赫歇尔(1738年11月15日-1822年8月25日)爵士才非常精心地对大量的恒星的位置和距离进行编目分类,从而证实了自己的观念。即便如此,这个思想在本世纪初才完全被人们接受。

银河系

1924 年,我们现代的宇宙图象才被奠定。那是因为美国天文学家埃得温·哈勃证明了,我们的星系不是唯一的星系。事实上,还存在许多其他的星系,在它们之间是巨大的空虚的太空。为了证明这些,他必须确定这些星系的距离。这些星系是如此之遥远,不像邻近的恒星那样,它们看起来是固定不动的,哈勃被迫用间接的手段去测量这些星系的距离。

星系之间的距离

恒星的表观亮度决定于两个因素:多少光被辐射出来(它的绝对星等)以及它离我们多远。对于近处的恒星,我们可以测量其表观亮度和距离,这样我们可以算出它的绝对亮度。相反,如果我们知道其他星系中恒星的绝对亮度,我们可用测量它们的表观亮度的方法来算出它们的距离。哈勃注意到,当某些类型的恒星近到足够能被我们测量时,它们有相同的绝对光度;所以他提出,如果我们在其他星系找出这样的恒星,我们可以假定它们有同样的绝对光度——这样就可计算出那个星系的距离。如果我们能对同一星系中的许多恒星这样做,并且计算结果总是给出相同的距离,则这样得出的结果会有相当大的信赖度。埃得温·哈勃用上述方法算出了九个不同星系的距离。现在我们知道,我们的星系只是用现代望远镜可以看到的几千亿个星系中的一个,每个星系本身都包含有几千亿颗恒星

我们生活在一个宽约为 10 万光年并慢慢旋转着的星系中;在它的螺旋臂上的恒星绕着它的中心公转一圈大约花几亿年。我们的太阳只不过是一个平常的、平均大小的、黄色的恒星,它靠近在一个螺旋臂的内边缘。

宇宙正在膨胀

恒星离开我们是如此之远,以致使我们只能看到极小的光点,而看不到它们的大小和形状。这样怎么能区分不同的恒星种类呢?对于绝大多数的恒星,只有一个特征可供观测——光的颜色。牛顿发现,如果太阳光通过一个称为棱镜的三角形状的玻璃块,就会被分解成像彩虹一样的分颜色(它的光谱)。将一个望远镜聚焦在一个单独的恒星或星系上,人们就可类似地观察到从这恒星或星系来的光谱线。不同的恒星具有不同的光谱,但是不同颜色的相对亮度总是刚好和一个红热的物体发出的光谱完全一致。(实际上,从一个不透明的灼热的物体发出的光,有一个只依赖于它的温度的特征光谱——热谱。这意味着可以从恒星的光谱得知它的温度。)并且,我们发现,某些非常特定的颜色在恒星光谱里找不到,这些失去的谱线可以因不同的恒星而异。既然我们知道,每一化学元素都有非常独特的吸收光谱线族,将它们和恒星光谱中失去的谱线相比较,我们就可以准确地确定恒星大气中存在什么元素。

多普勒效应

光的不同波长正是人眼看到的不同颜色,最长的波长出现在光谱的红端,而最短的波长在光谱的蓝端。想像在离开我们一个固定的距离处有一光源——例如恒星——以固定的波长发出光波。显然我们接收到的波长和发射时的波长一样(星系的引力场没有强到足以对它产生明显的效应)。现在假定这恒星光源开始向我们运动。当光源发出第二个波峰时,它离开我们更近一些,这样两个波峰之间的距离比恒星静止时更小。这意味着,我们接收到的波的波长比恒星静止时更短。相应地,如果光源离开我们运动,我们接收的波的波长将更长。这意味着,当恒星离开我们而去时,它们的光谱向红端移动(红移);而当恒星趋近我们而来时,光谱则蓝移。这个称之为多普勒效应的频率和速度的关系是我们日常所熟悉的,例如我们听路上来往小汽车的声音:当它开过来时,它的发动机的音调变高(对应于声波的高频率);当它通过我们身边而离开时,它的音调变低。光波或无线电波的行为与之类似。警察就是利用多普勒效应的原理,以无线电波脉冲从车上反射回来的频率来测量车速。

在哈勃证明了其他星系存在之后的几年里,他花时间为它们的距离以及观察到的光谱分类。十分令人惊异的是,他发现大部份星系是红移的——几乎所有都远离我们而去!更惊异的是 1929 年哈勃发表的结果:甚至星系红移的大小也不是杂乱无章的,而是和星系离开我们的距离成正比。换句话讲,星系越远,则它离开我们运动得越快!这表明宇宙不可能像原先人们所想像的那样处于静态,而实际上是在膨胀;不同星系之间的距离一直在增加着。

宇宙膨胀的发现是 20 世纪最伟大的智慧革命之一。事后想起来,何以过去从来没有人想到这一点?!牛顿或其他人应该会意识到,静态的宇宙在引力的影响下会很快开始收缩。然而现在假定宇宙正在膨胀,如果它膨胀得相当慢,引力会使之最终停止膨胀,然后开始收缩。但是,如果它膨胀得比某一临界速率更快,引力则永远不足够使膨胀停止,宇宙就永远继续膨胀下去。

19 世纪、18 世纪甚至 17 世纪晚期的任何时候,人们都可以从牛顿的引力论预言出宇宙的这个行为。然而,静态宇宙的信念是如此之强,以至于一直维持到了 20 世纪的早期。甚至爱因斯坦于 1915 年发表其广义相对论时,还是如此之肯定宇宙必须是静态的,以使得他在其方程中不得不引进一个所谓的宇宙常数来修正自己的理论,使静态的宇宙成为可能。爱因斯坦引入一个新的“反引力”,这力不像其他的力那样,不发源于任何特别的源,而是空间——时间结构所固有的。他宣称,空间——时间有一内在的膨胀的趋向,这可以用来刚好去平衡宇宙间所有物质的相互吸引,结果使宇宙成为静态的。

宇宙各向同性

当爱因斯坦和其他物理学家正在想方设法避免广义相对论的非静态宇宙的预言时,俄国物理学家和数学家亚历山大·弗利德曼(1888年6月16日-1925年9月16日)对于宇宙作了两个非常简单的假定:我们不论往哪个方向看,也不论在任何地方进行观察,宇宙看起来都是一样的。弗利德曼指出,仅仅从这两个观念出发,我们就应该预料宇宙不是静态的。事实上,弗利德曼在 1922 年所做的预言,正是几年之后埃得温·哈勃所观察到的结果。

很清楚,关于在任何方向上宇宙都显得是一样的假设实际上是不对的。例如,正如我们所看到的,我们星系中的其他恒星形成了横贯夜空的叫做银河系的光带。但是如果看得更远,星系数目就或多或少显得是同样的。所以假定我们在比星系间距离更大的尺度下来观察,而不管在小尺度下的差异,则宇宙确实在所有的方向看起来是大致一样的。在很长的时间里,这为弗利德曼的假设——作为实际宇宙的粗糙近似提供了充分的证实。但是,近世出现的一桩幸运的事件所揭示的事实说明了,弗利德曼假设实际上异常准确地描述了我们的宇宙。

1965 年,美国新泽西州贝尔电话实验室的阿诺·彭齐亚斯和罗伯特·威尔逊正在检测一个非常灵敏的微波探测器时(微波正如光波,但是它的波长大约为 1 英寸),他们的检测器收到了比预想的还要大的噪声。彭齐亚斯和威尔逊为此而忧虑,这噪声不像是从任何特别方向来的。首先他们在探测器上发现了鸟粪并检查了其他可能的故障,但很快就排除了这些可能性。他们知道,当探测器倾斜地指向天空时,从大气层里来的噪声应该比原先垂直指向时更强,因为光线在沿着靠近地平线方向比在头顶方向要穿过更厚的大气。然而,不管探测器朝什么方向,这额外的噪声都是一样的,所以它必须是从大气层以外来的,并且在白天、夜晚、整年,也就是甚至地球绕着自己的轴自转或绕太阳公转时也是一样的。这表明,这辐射必须来自太阳系以外,甚至星系之外,否则当地球的运动使探测器指向不同方向时,噪声必须变化。

事实上,我们知道这辐射必须穿过我们可观察到的宇宙的大部分,并且由于它在不同方向都一样,至少在大尺度下,这宇宙也必须是各向同性的。现在我们知道,不管我们朝什么方向看,这噪声的变化总是非常小。这样,彭齐亚斯和威尔逊无意中非常精确地证实了弗利德曼的第一个假设。然而,由于宇宙并非在每一个方向上,而是在大尺度的平均上相同,所以微波也不可能在每一个方向上完全相同。在不同的方向之间必须有一些小变化。1992 年宇宙背景探险者,或称为 COBE,首次把它们检测到,其幅度大约为 10 万分之 1。

大约同时,在附近的普林斯顿的两位美国物理学家,罗伯特·狄克和詹姆士·皮帕尔斯也对微波感兴趣。他们正在研究乔治·伽莫夫(曾为亚历山大·弗利德曼的学生)的一个见解:早期的宇宙必须是非常密集的、白热的。狄克和皮帕尔斯认为,我们仍然能看到早期宇宙的白热,这是因为光是从它的非常远的部分来,刚好现在才到达我们这儿。然而,宇宙的膨胀使得这光被如此厉害地红移,以至于现在只能作为微波辐射被我们所看到。正当狄克和皮帕尔斯准备寻找这辐射时,彭齐亚斯和威尔逊听到了他们所进行的工作,并意识到,自己已经找到了它。为此,彭齐亚斯和威尔逊被授予 1978 年的诺贝尔奖(狄克和皮帕尔斯看来有点难过,更别提伽莫夫了!)

三个假设模型

现在初看起来,关于宇宙在任何方向看起来都一样的所有证据似乎暗示,我们在宇宙的位置有点特殊。特别是,如果我们看到所有其他的星系都远离我们而去,那似乎我们必须在宇宙的中心。然而,还存在另外的解释:从任何其他星系上看宇宙,在任何方向上也都一样。我们知道,这正是弗利德曼的第二个假设。我们没有任何科学的证据去相信或反驳这个假设。我们之所以相信它只是基于谦虚:因为如果宇宙只是在我们这儿看起来各向同性,而在宇宙的其他地方并非如此,则是非常奇异的!在弗利德曼模型中,所有的星系都直接相互离开。这种情形很像一个画上好多斑点的气球被逐渐吹胀。当气球膨胀时,任何两个斑点之间的距离加大,但是没有一个斑点可认为是膨胀的中心。并且斑点相离得越远,则它们互相离开得越快。类似地,在弗利德曼的模型中,任何两个星系互相离开的速度和它们之间的距离成正比。所以它预言,星系的红移应与离开我们的距离成正比,这正是哈勃所发现的。尽管他的模型的成功以及预言了哈勃的观测,但是直到 1935 年,为了响应哈勃的宇宙的均匀膨胀的发现,美国物理学家哈瓦·罗伯逊和英国数学家阿瑟·瓦尔克提出了类似的模型后,弗利德曼的工作在西方才被普遍知道。

虽然弗利德曼只找到一个模型,其实满足他的两个基本假设的共有三种模型。

第一种模型(即弗利德曼找到的),宇宙膨胀得足够慢,以至于在不同星系之间的引力使膨胀变慢下来,并最终使之停止。然后星系开始相互靠近,宇宙开始收缩。(这个模型空间上不是无限的,但没有边界)

第二个模型,宇宙膨胀得如此之快,以至于引力虽然能使之缓慢一些,却永远不能使之停止。邻近星系的距离随时间的变化。刚开始时距离为零,最后星系以稳恒的速度相互离开。(这个模型的空间上是无限的)

第三个模型,宇宙的膨胀快到足以刚好避免坍缩。星系的距离从零开始,然后永远增大。然而,虽然星系分开的速度永远不会变为零,这速度却越变越小。(这个模型的空间上也是无限的)

现在我们知道的是,宇宙在每 10 亿年里膨胀 5%至 10%。然而,我们对现在宇宙的平均密度测量得更不准。我们如果将银河系和其他所有能看
到的星系的恒星的质量加起来,甚至是按对膨胀率的最低的估值而言,其质量总量比用以阻止膨胀的临界值的 1 %还少。然而,在我们以及其他的星系里应该有大量的“暗物质”,那是我们不能直接看到的,但由于它的引力对星系中恒星轨道的影响,我们知道它必定存在。况且人们发现,大多数星系是成团的。类似地,由其对星系运动的效应,我们能推断出还有更多的暗物质存在于这些成团的星系之间。将所有这些暗物质加在一起,我们仍只能获得必须用以停止膨胀的密度的 1/10。然而,我们不能排除这样的可能性,可能还有我们未能探测到的其他的物质形式几乎均匀地分布于整个宇宙,它仍可以使得宇宙的平均密度达到停止膨胀所必要的临界值。

奇点

所有的弗利德曼解都具有一个特点,即在过去的某一时刻(约 100 到 200 亿年之前)邻近星系之间的距离为零。在这被我们称之为大爆炸的那一时刻,宇宙的密度和空间——时间曲率都是无穷大。因为数学不能处理无穷大的数,这表明广义相对论(弗利德曼解以此为基础)预言,在宇宙中存在一点,在该处理论自身失效。这正是数学中称为奇点的一个例子。事实上,我们所有的科学理论都是基于空间——时间是光滑的和几乎平坦的基础上被表述的,所以它们在空间——时间曲率为无穷大的大爆炸奇点处失效。这表明,即使在大爆炸前存在事件,人们也不可能用之去确定之后所要发生的事件,因为可预见性在大爆炸处失效了

正是这样,与之相应的,如果我们只知道在大爆炸后发生的事件,我们也不能确定在这之前发生的事件。就我们而言,发生于大爆炸之前的事件不能有后果,所以并不构成我们宇宙的科学模型的一部分。因此,我们应将它们从我们模型中割除掉,并宣称时间是从大爆炸开始的

英国数学家兼物理学家罗杰·彭罗斯在 1965 年以完全不同的手段给出了回答。利用广义相对论中光锥行为的方式以及引力总是吸引这一事实,他指出,坍缩的恒星在自己的引力作用下被陷入到一个区域之中,其体积最终缩小到零。恒星中的所有物质将被压缩到一个零体积的区域里,所以物质的密度和空间——时间的曲率变成无限大。换言之,人们得到了一个奇点,它被包含在叫做黑洞的空间中。

在不到半个世纪的时间里,人们几千年来形成的关于宇宙的观点被改变了。哈勃关于宇宙膨胀的发现,并意识到我们的行星在茫茫的宇宙中的微不足道。随着实验和理论证据的积累,人们越来越清楚地认识到,宇宙在时间上必须有个开端。直到 1970 年,在爱因斯坦的广义相对论的基础上,这才被彭罗斯(1931年8月8日出生)和我(霍金)所证明。这个证明显示,广义相对论只是一个不完全的理论,它不能告诉我们宇宙是如何开始的。因为它预言,所有包括它自己在内的物理理论都在宇宙的开端失效。然而,广义相对论宣称自己只是一个部分理论,所以奇点定理真正所显示的是,在极早期宇宙中有过一个时刻,那时宇宙是如此之小,以至于人们不能再不管 20 世纪另一个伟大的理论——量子力学的小尺度效应。20 世纪 70 年代初期,我们被迫从对极其巨大范围的理论研究转到对极其微小范围的理论研究。下面在我们将这两个部分理论结合成一个单独的量子引力论之前,首先得了解量子力学理论。

评论

Ajax Android AndroidStudio Animation Anroid Studio AppBarLayout Babel Banner Buffer Bulma ByteBuffer C++ C11 C89 C99 CDN CMYK COM1 COM2 CSS Camera Raw, 直方图 Chrome ContentProvider CoordinatorLayout C语言 DML DOM Dagger Dagger2 Darktable Demo Document DownloadManage ES2015 ESLint Element Error Exception Extensions File FileProvider Flow Fresco GCC Git GitHub GitLab Gradle Groovy HTML5 Handler HandlerThread Hexo Hybrid I/O IDEA IO ImageMagick IntelliJ Intellij Interpolator JCenter JNI JS Java JavaScript JsBridge Kotlin Lab Lambda Lifecycle Lint Linux Looper MQTT MVC MVP Maven MessageQueue Modbus Momentum MySQL NDK NIO NexT Next Nodejs ObjectAnimator Oracle VM Permission PhotoShop Physics Python RGB RS-232 RTU Remote-SSH Retrofit Runnable RxAndroid RxJava SE0 SSH Spring SpringBoot Statubar Task Theme Thread Tkinter UI UIKit UML VM virtualBox VS Code VUE ValueAnimator ViewPropertyAnimator Vue Web Web前端 Workbench api apk bookmark by关键字 compileOnly css c语言 databases demo hexo hotfix html iOS icarus implementation init jQuery javascript launchModel logo merge mvp offset photos pug query rxjava2 scss servlet shell svg tkinter tomcat transition unicode utf-8 vector virtual box vscode 七牛 下载 中介者模式 串口 临潼石榴 主题 书签 事件 享元模式 仓库 代理模式 位运算 依赖注入 修改,tables 光和色 内存 内核 内部分享 函数 函数式编程 分支 分析 创建 删除 动画 单例模式 压缩图片 发布 可空性 合并 同向性 后期 启动模式 命令 命令模式 响应式 响应式编程 图层 图床 图片压缩 图片处理 图片轮播 地球 域名 基础 增加 备忘录模式 外观模式 多线程 大爆炸 天气APP 太白山 头文件 奇点 字符串 字符集 存储引擎 宇宙 宏定义 实践 属性 属性动画 岐山擀面皮 岐山肉臊子 岐山香醋 工具 工厂模式 年终总结 开发技巧 异常 弱引用 恒星 打包 技巧 指针 插件 摄影 操作系统 攻略 故事 数据库 数据类型 数组 文件 新功能 旅行 旋转木马 时序图 时空 时间简史 曲线 杂谈 权限 枚举 架构 查询 标准库 标签选择器 样式 核心 框架 案例 桥接模式 检测工具 模块化 模板引擎 模板方法模式 油泼辣子 泛型 洛川苹果 浅色状态栏 源码 源码分析 瀑布流 热修复 版本 版本控制 状态栏 状态模式 生活 留言板 相册 相对论 眉县猕猴桃 知识点 码云 磁盘 科学 笔记 策略模式 类图 系统,发行版, GNU 索引 组件 组合模式 结构 结构体 编码 网易云信 网格布局 网站广播 网站通知 网络 美化 联合 膨胀的宇宙 自定义 自定义View 自定义插件 蒙版 虚拟 虚拟机 补码 补齐 表单 表达式 装饰模式 西安 观察者模式 规范 视图 视频 解耦器模式 设计 设计原则 设计模式 访问者模式 语法 责任链模式 贪吃蛇 转换 软件工程 软引用 运算符 迭代子模式 适配器模式 选择器 通信 通道 配置 链表 锐化 错误 键盘 闭包 降噪 陕西地方特产 面向对象 项目优化 项目构建 黑洞
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×